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INTRODUCTION

This is the last of several'4 reports which conceptually go

beyond the usual practical treatments of K. in the theoretical

applied mechanics literature. That literature consists of

derivations of a Kk or other single associated measure (COD), for

each of many configurations of cracked material and loading such

that evaluation of the appropriate formula to any test under Kk

conditions gives the same toughness value as would a similar test

of any other configuration of the same material. This is

consistent with the notion that toughness is a unique fundamental

property of materials, one not made up of simple fundamental

quantities such as fracture stress or work hardening modulus.

Here, however, K. toughness is not considered basic but dependent

on two metallurgically controllable parameters, the tensile

brittle fracture stress and a postulated strain parameter, the

effective crack tip radius existing at the K. fracture load

stress; this, in turn, is considered to be dependent on

metallurgy, e.g., sulfur content, as well as the K. loading

stress. The reports describe how to determine the fracture

stress and the radius from Kk tests using a postulated fracture

criterion characteristic of the material and a curve derived from

the solution for the state of stress in the yielded region of a

short elliptically shaped flat crack lying across the center of a

plate under uniform tensile loading. Here a more exact solution
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supplants the approximate ones used previously and it is shown

that radius determinations remain unchanged although fracture

stress determinations are 75% as large. The state of application

and advantages of the fracture stress approach over the energy

approach are discussed.

The title of this report was first used on a report' issued

in October 1978; for comparison that report shall be called the

First Report. It was a "how to" report based upon a curve

obtained by an approximate analysis employing elasticity shear

stress trajectories with the hope that the analysis would soon be

followed* by a more exact finite element one 5,6 The latter was

expected to apply, not only to the crack problem, but to evaluate

the approximate type of analysis fir the crack and other stress

concentration problems where the yield point was locally exceeded

and for which an exact analysis was difficult to achieve.

A careful, time consuming finite element analysis was

finally made in 1984 by Colin E. Freese and Dennis M. Tracey

largely in answer to the above expectation7 °0 . It is the one used

in this report, is considered very good (the best available), and

contains a surprising limiting stress result. However, it leaves

some important questions unanswered: whether the stress is

maximum just off the center line of the crack, as found by the

0"R was fobied by a ailnuoih dteme and exp•f•ienl *bhl led by Abat Kobeyai (Rcfeeam 5, 6). TIe cxpcrneW resulhs wcc
ver snis'actory, but it was evidea dud a fier grid wauld be necesary for prec finite e m ult.
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approximate method (a distance too small for the finite elements

used) and whether it is appropriate, even near the crack tip, to

compare the approximation which was based upon the uniform

biaxial loading used by fracture mechanics pioneers, following

Griffith"-12 , with the uniaxial tension loading used by Freese and

Tracey. The delay in publishing the present analysis was largely

due to the expectation that time could have been found for

definitive answers to such questions.

The approach here to crack toughness or brittleness is not

an energy approach but a tensile brittle fracture stress' 4

approach (Fig.l). Using shear stress trajectories (Fig. 2), the

maximum tensile stress, S. for loading stress S, is computed from

SM = Y (1 + A.) where Y is the plane strain yield strength and L

is the largest angle change found among all the principal shear

stress trajectories crossing the yield region at the crack tip.

Thus, this stress is ahead of the crack and increases with the

amount of yielding; hence, load; if it equals the brittle

fracture stress, F, of the material, failure occurs. The strain

where the trajectory corresponding to & crosses the yield region

is small; hence, work hardening is negligible, and since the

trajectory is far from the crack tip with any appreciable L, the

exact shape of the tip is of limited importance; the radius of

the tip found from the analysis, whatever its origin, is an

effective radius.
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The finite element solution is based upon a crack tip radius

of p = 0.001, taking half the crack length as the unit of

distance, and was applied to other cases through dimensionless

ratios. For that solution, the dimensionless ratio & was

computed by equating Y (1 + L) to the maximum stress

corresponding to an applied loading stress. Y, the plane strain

yield strength, was taken to be 2xlo5/v/.

FINITE ELEMENT DATA AND MATCHING FORMULAE

Our notation and definitions are contained in Table I.

The finite element program models a long flat tensile

specimen which is loaded uniformly at the ends and is pierced by

a central crack of length 2a across its middle.

For present use, Freese supplied the unsmoothed finite

element method results, as well as L, M, and L directly computed

from it, by Table II. The L and M versus L data is used to

determine fracture stress F, and effective crack tip radius, p,

from appropriate (pressure free crack surface) experimental K., Y

(toughness, yield strength) data.

4



TABLE I
NONENCLATURE AND BASIC RELATIONS

a = crack length/2

p = 0.001 = crack tip radius in Table II

Yt= Tensile test yield strength = 102 ksi in Table II

Y =2Yt/r = Plane strain yield strength, the yield
strength used in all analyses in this report.

S = The uniform tensile loading stress

x = Distance from crack tip to point of maximum stress, S,

Sm = Maximum stress ahead of crack at loading stress S,
i.e., stress at x.

F = Tensile stress needed to cause fracture; here the nil-
ductility tensile fracture stress.

SM = F under K.t test conditions.

A = Maximum shear stress trajectory angle change;
S, = Y(1 + A)

L = Ylsv

= Yý-np/K, a dimensionless parameter

= 3.65148/S in Table II; at initial yielding L = 2

K = SvW- here, = Kk toughness under K1k test conditions

X = Lvr.7p a (Y/K) Isi, by definition.
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MATCHING FORMULAE

The following L and M formulae are selected from the many

that were devised to match and smooth the L" and M data tabulated

in Table II and shown in Figures 3 through 5.

With F = Y(l+L) for no pressure on crack faces,

L(a Y'iI-/_K) 1 In 1.46
1.29 L+0.12

_ 1 in 1.46 when F=Y(I+L)
1.29 S./Y-0.88

M n Lvr7-/p a Yvri/AK) = L{sinh[(8/3)AL]/2'11

= L{sinh[(8/3) (SI/Y-I)]/2)}4

L maximum is 2, and goes precipitately to effectively zero at

x/p maximum is 5, 0•x/p•5

Si1/Y maximum is a 2.11 Y

Considering te validity of data, etc., we actually use the fomula for L to A. = 1.1 1 = 10/9, where, in fact L seems to sharply drop to zero;
to approximately s:e this drop, multiply the L formula by R=(I-(SAJ9)'r ". The Tables for L vs. A. of the First Report may be used in place of the above
L vs. A. formula if the A's are multiplied by 3/4; wce L vs 4., p. 17.
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If there is plane strain pressure, P, on the crack faces13

S = Y (1.&) -P.

The data is not precise below & = 0.25, say, a caution,

especially for those who use the data directly rather than

through the formulae.

BRITTLE (NIL-DUCTILITY) TENSILE FRACTURE STRESS,

EFFECTIVE RADIUS, YIELD STRENGTH

FRACTURE STRESS

If the tensile test temperature of a structural metal is

lowered sufficiently the metal is found to break with little or

no ductility. This stress is our fracture stress, F, if there

has been slight straining, but not necessarily if the temperature

is so low that there is no strain for there is evidence in at

least some cases, that a completely undeformed specimen requires

a higher stress for fracture than a slightly deformed one. In

our case the greatest stress lies on the border of deformed

material beyond the front of the crack. See Figure 6, where,

assuming uniform yielding, F is about 60 ksi and high strain rate

takes the place of low temperature.

F is of course, a macroscopic brittle, essentially nil-

ductility tensile fracture stress, not the theoretical fracture

8



stress of a homogeneous flawless material; the theoretical stress

is presumably reduced to it by heterogeneity, flaws or

inclusions.

For our conception of fracture stress see Fig. 7.

In the next section on use of the finite element data, we

assume that for certain ranges of data that a linear fracture

stress law may be used, i.e., Y = (1 + #)Y + f, where 0 and f are

constants.

For the high strength steels with which he was familiar, the

author observed, or inferred, that for tests at low to moderate

temperatures covering practical ranges of brittle failure, that

when the temperature of the tests alone was varied F = f, a

constant, and that when the tempering temperature of the test

specimens alone was varied F = Y + f, i.e., the fracture stress

was a constant amount above the yield strength, Y. These

relations he generalized into a linear fracture stress "law"

which he assumed suitable for the range of stress involved in the

K. determinations of p and F, i.e.,

F = (1 + ft) Y + f

Acccrdaingl the writer observed that faibre in gum occurred wham die yield steth was raised by low temperature operation so dothatde
concentrated yied strength equaged P, tde fracmre strength of the material of which they were made. (See Discussion)

9



Thus 0 = -1 for the varied test temperature tests above and

0 = 0 for the varied tempering temperature tests, above.

RADIUS

In the usual small deformation elastic solution

corresponding to a flat elliptical notch in a tension field, the

tip radius increases, in proportion to the load, depending on the

modulus of elasticity, E; this is likewise the case for the non-

cyclic loading elastic-plastic solution except that the

proportion depends on the amount of yielding and thus on the

yield strength and, to a more limited extent, on the work

hardening modulus. The point here is that there is a unique

radius for each load; the metallurgically dependent radii we have

postulated do not exist for that fixed geometry.

But our deductions of radii, based on the curve fitting

methods described in the next section are evidence that a change

does take place at the very highly stressed tip, that we get

radii other than above.

And, Taggart 3 , fitting a parabola to the deflection of crack

boundaries near the tip, found an increase in p with K, an

increase to K. load. The increase was not the same for different

materials, as it would be if the crack tip radius increased

10



uniquely with load for a given Y (and work hardening modulus, if

large).

Thus, although F varies with Y, it is assumed in the

analysis for p below, that p remains the same in any two ordinary

test conditions for K. unless the fracture shows a change such

as, e.g., the appearance of cleavage fracture in the one test but

not the other.

Theoretically, if not practically, according to the

definitions of L and M, x the distance to the point of maximum

stress along the crack axis could have been chosen instead of p

as one of our crack characterization parameters.

YIELD STRENGTH

Perhaps this is as good a place as any to point out that a

likely source of error is the use of conventional determinations

of yield strength in our formulae. Our yield strength should be

that of completely yielded material such as that determined by

cyclic tests, even if the yielding is small. The conventional

determinations are generally too high 6"'; a particularly bad case

is that of mild steel in which even the lower yield point

represents non-uniform yielding, where the first yield is that of

a slip band at an enormous rate of strain [(specimen length/slip

band width) x nominal strain rate]. It is arguable that the

11



endurance limit stress is the proper one; taking the yield

strength to be half the tensile strength may be acceptable in

some cases.

The fracture stress may be little above the apparent yield

strength, but substantially above the actual yield strength.

USE OF THE FINITE ZLELENT DATA

MODE I STANDARD TEST Kk DATA

The object here is to determine F and p from K. data

obtained with pressure free crack faces. If only L (= YýiFp/Kzc)

is known for two or more cases, L must be supplemented by other

information such as an appropriate fracture law, here taken to be

F = (1 + P) Y + f, and assumptions supported by metallurgy and

fractography of constancy of p and F in the range of data used in

the determination.

Examples will be found in the First Report from which we A

have drawn Fig. 8. From this we note how well F and p

determinations correspond to the experimental data as well as the

effect of Sulfur level on the radius. Four cases are cited here,

defined by what is used and constant (C m constant) in the range

considered.

12



M with L

F and p can be determined from the equations for L and M if

x can be measured or inferred, e.g., from ripples which might

result from successive fracturing and opening to the crack tip,

especially if the incipient fracture is just off the center line

of the crack, x being the distance from the tip of the crack to

the site of incipient fracture. x may be of the order of one to

five thousandths of an inch.

Thus in M we would have an expression in which all

quantities except F are known; thus M determines F. Insertion of

this F into L is an expression for p. A hand held computer which

is programmable is handy for this.

Le = -1, C(pf)

For • = -1, corresponding to constant F at different test

temperatures, F = f, a constant though Y changes. (See Fig. 9).

Assuming F and p are the same for two data points, Y, K., two

simultaneous equatihns may be formed and solved for F and p since

each insertion of a data po 4 nt Y, K. into the expression for L

provides an equation. Obviously, different combinations of data

points may be used to check a result.

13



Le = O, C(p,f)

For = = 0, corresponding to tests at different tempering

temperatures, F = Y + f where f is a constant and Y changes. (See

Fig. 8) Since we assume p = constant (subject to constancy of

existence of the weakest kind of fracture, e.g., grain boundary

fracture).

La Yv'p/K = function (F/Y)

we have for two data points:

YI1V/K 1 = function(l+ f/Y 1 )

and

Y2P/K2 = function ( + f/Y 2 )

These may be solved simultaneously to find f and p.

L, P, C (p, 1) and L, C (p, f)

The scatter in experimentally determined values of K is

often so pronounced that a curve fitting procedure using

transparent overlay graphs and involving more Kk, Y values is

14



recommended, as described in the First Report and repeated, in

part, in Appendix I - Overlays. (See Figs. 10-12.)

It will be recognized by some that this overlay procedure

can be done very readily on a computer; for example, following

the procedure of Kk versus Y for various tempering temperatures

of steel for which P = 0, plot in (1/AL) versus in (i/L) from the

equation for L versus L, the overlay, and separately, plot the K,'

versus Y data as in K versus in Y. Move the latter plot of

points, along with its coordinates, parallel to the coordinates

of the in (1/AL) versus in (1/1) plot until the points fit the

curve of the latter plot. Then f, a constant, is that coordinate

value of Y where the in Y coordinate is crossed by the unit

vertical coordinate of the overlay and, similarly, fnp, a

constant, is that coordinate value of K where the in K coordinate

is crossed by the unit horizontal coordinate of the overlay.

Then F = Y + f where Y is any Y and* p is (f Vjn) 2 /nf 2 .

Generally, a master reusable in in plot of [1/(&-0)L] versus

[I/(&-0)] is made on transparent in in paper as a bank of 0

constant curves; this overlay is placed over any particular plot

of K, Y data on the same size of in in paper as the transparency

and slid parallel to the coordinates to the P curve which best

matches the data; this determines # and, simultaneously, f and p;

"FPm ezp•knmcw it i aeldm wovhwhIk& W iw for dw law chmgc ip n is dmm ie Pim Repol•.
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f is that coordinate value of Y where the Y coordinate is crossed

by the unit vertical coordinate of the overlay and fE"ni is that

coordinate value of K where the K coordinate is crossed by the

unit horizontal coordinate of the overlay.

HYDROSTATIC PRSSURZ MODIFICATION OF 1,

Kk formulae obtained by energy methods are independent of

hydrostatic pressure'. This particular consequence may be

justified by the belief that there is always an infinite stress

singularity at the tip of the crack.

Here, however, it is believed that for metallic materials of

construction, at least, there is an effective crack tip radius at

any load; that consequently all stresses are finite and reduced

by the addition of hydrostatic pressure; that K. failure will

occur if the largest stress equals the tensile brittle fracture

stress, F, of the material.

Thus we now consider how to modify Kk determinations to make

them applicable to the case where there is uniform pressure on

the crack surface, a pressure that might be applied by

superimposing on the standard loading a hydrostatic pressure.

16



A plot of L vs. L for a crack in a distant field of uniform

tension S" is a plot of [(SIY) (a/p)'] - vs. A. where if S/Y and

a/p are known one finds A. The addition of a plane hydrostatic"

pressure P does not change the yielded areas, their boundaries or

the geometry; it only makes the size slightly and negligibly

smaller. It does not affect the yield boundaries of the lobes of

yielded regions at the tips of the crack; therefore A is not

changed. P, however, is added (negatively) to every component of

normal stress, including boundary loading stress, S, but we still

think of the boundary loading stress (S - P) as made up of its

two components since only S controls A; L in L vs. A does not

contain P; it is still [(S/Il (a/p)1]-1. Though A is unchanged it

is used to determine S,; if there is no P, we have S, = Y(1 + A)

but if there is an addition of hydrostatic pressure P, as

described** above, S. = Y(1 + A)-P.

Thus without P, A = S,/Y - 1 and with P, A = (S, + P)/Y - 1

although K is independent of P in L=Yv/SVfw-a=YýI/K.

"The (lr i case, bt equivalet tor = ide crack to the ca of ui mai me peipedcular to the crack.

"Obviomly, the oSiAl lding couMl have been a fe crucik hmated of aple xeenally in which cas P (if P was Ow loding) woul be ia L
leed of S. We chooe the exteral emae he bca it is dte cas for which k meaumcmeo am made.

Ac..di• g o th u• eq.qtio"s, for a maWial where it m&dergoe a con yieding sUea, Y, A. coresponds to increase A. Y

over th magniude of the prmca a msus at th crack aide of the bomduy of the yieded giom (lobe bundawy) by the correponding shesses locad by
folowing a priscipl shew sý-s Wajectoy, on The o1ter side. Thu, the magniude of a prcial spiesw (Y- P) on the crack side becomes (Y - P) + AN.Y =
Y(l + Q)-P for a comnqoadt aman n the other side as he differcme directin s is A.. Tha is twhe sme. of couse, as increasing the origial S. stress.
Y(l + A.) by he hydrostic dress -P.

17



Obviously, if S, = F, a material constant, & is greater on

the L vs. & plot with P than without P.

Thus, a knowledge of F and p found from a standard test

specimen Kk can be used to determine what 'Kk' value should be

used if there is known internal pressure P: & = (F + P)/Y -1,

this determines L; then K., = Y-/IL, calling Kp the critical

'Kk' with pressure, a quantity larger than K..

With guns, IPI = S, so there is no external loading stress,

only an internal pressure (S).

QUANTITATIVE RELATIONSHIP BETWEEN THE FINITE ELEMENT

AND FIRST REPORT RESULTS

L versus L

A comparison of the data for the basic L versus k curve of

the First Report and the present Freese-Tracey finite element

data indicates to possibly 95% accuracy that for any specified

value of L, and thus any combination of Y, K. and p making up

that value of L, in either source,

A. = (3/4) A.,

where the subscript "1" stands for the First Report.•

Thus ft L vs & Tables of de First Report uay be used to & c€-off if ft tabuised 4,s art mutkiped by 314.
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Since, also

F = Y(1 + &)

F1 = Y,(1 + Ai)

we have

F/Y -1 = (3/4) (F,/Y, -1)

where L = Yvf/Kz = YV x-•I/Kx¢

In particular, if Y = Y1 , so that it is also necessary that

F - Y = (3/4) (F 1 -Y)

which may be rewritten for different insight as

F = Y + (3/4) (F1-Y)

F = 3/4 F1 + Y14

F = F1 - (F1 - Y)/4
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F=(I +P) y + f vs.

Next, we note how the linear fracture stress laws compare,

also using F = Y(1+L) and F, = Y1 (l+A-)-

Since we wish the consequence of a particular assigned value

of f in either case, f = l; in designating $ we are thus

defining F in terms of Y and f:

F= (1 +) Y+f

F, = (1+ P ) Y1 +ff

We note the result of elimination of • from these as well as

two cases of special interest, • = 0 and 0 = -1.

By elimination of B

f/Y-f1 /ZY = (F/Y-i) - (FI/Y1 -1)

whence, since F =Y(1 + &) and F1 = Y (I+A-)

flY-f1 /Y 1 =

and thus if Y = ¥,
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f-f, Y -- = -&j)

where we can substitute for the angles their expressions in L.

For 0, with YV = Y:

F = Y+f, so F/Y-1 = A, = flY

F = Y+ fl, so F 1/Y-- & = fl = Y

&-- (3/4) &1; flY = (3/4) (f 1 /Y)

i.e., f - (3/4) f,

We noted in L vs. & that Ai = (3/4)A. used here, was for

equality of L's in the expressions for & vs. L.

Thus,

p =p,

since we assume Y = ¥1 and K,, = K,,, in the expression for L.

See Figure 11, the • = 0 overlay for the First Report, on

which new axes have been added making it valid for the new finite

element data & = (3/4)A,; these axes are displaced downwards and

to the left by ln (3/4) from the old ones; this follows from the
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fact that on in in paper the old coordinates are 1/&,L vs 11L,

while the new ones are 1/[(3/4)& 1 L] vs. 1/(3/4) 4, i.e.,

on in in paper we have in (l/A.1 L) - in (3/4) vs. lnl/A 1 - in (3/4).

For -1 the strength law gives

F= f

F1 = f

From this because L = (3/4) &L we have for Y =Y,

F/Y-I = (3/4) (F/Y-1)

i.e.,

F = (3/4) F1 + Y/4

as was expressed above under L vs. &, although the strength law

is designed to make F independent of change in Y for f = -1. The

consequences are discussed below.

Using the First Report data, if one found F and p for 3 = -l

by precisely matching experimental observations of K. and Y, one

could not get a precise match for F and p using the new data for

= -1; one would have to change # to get a match; in this case,

= -1, would change to f = -3/4:
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1 1 1

&-P (3/4) &1+3/4 3/4 (&1+l)

where the second expression is, of course L + 3/4. On in paper

the 3/4 is simply a translation movement; no change in shape

takes place. But this is not the desired match for # = -1 for

the finite element solution if the match was made for 0 = -1 for

the First Report.

Thus, believing in the utility of the f = -1, i.e., F = f,

independent of Y result for tests at various test temperatures,

we conclude that there was not an exact correlation for • = -1

tests in the First Report, though a useful one.

What we find is that a very satisfactory correlation, a

satisfactory match for the useful range of data, exists between

the • = -1 overlays for the new and old data, that is the

overlays whose axes intercepts on the in in plot of K,, vs. Y

determine F and p. For the First Report the overlay is a in in

plot of 1/[(&1 +1)LI vs. 1/(A.1 +1); for the new work it is

1/[(0.75&1 +1)L] vs. 1/(0.75A-+1) , since A. = 0.75A- 1 . These two

plots match quite well if the horizontal axis of the latter is

displaced to in 0.935 downwards and the vertical axis is

displaced leftwards to ln 0.855, of the original First Report

axis.
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These new axes are shown in Figure 12.

The intercepts determining F and p are displaced the same

amount.

Thus,

F = 0. 85SF,

and

F.v'n-/ = 0.935 FV-n-•

i.e.,

0.855F1vfn- = O.935F11/'nipj

p = 1.196 P,

DISCUSSION AND CONCLUSIONS

Before taking the Freese - Tracey data as definitive and

comparing it with those of the First Report, it should be pointed

out that the maximum stress reported in the First Report was not
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on the center 2 line of the crack but just to one side of it

(except for initial yielding) while the maximum stress reported

by Freese - Tracey was on the center line; the grid used was too

coarse to make such a distinction. It should also be pointed out

that Freese - Tracey data is scattered for small degrees of

yielding, and equal stress loading along and perpendicular to the

crack was used in the First Report and simple tension in the

Freese - Tracey case (a difference possibly of consequence if

yielding is relatively extensive). The shear case was solved

(not published) by the method of the First Report and showed no

concentration of stress; a result which seems to conform with

experiment, thus, the method is of interest in considering the

above points.

Except for a sort of scaling factor, correlations of K,,, Y

data to find F and p by Freese - Tracey and the First Report are

practically equivalent. Thus, to use the excellent correlations

in the examples of the First Report, one only need to change for

S= 0, f = (3/4)fl, p = p, and for 0 = -1, F = .855 F1,

p = 1.196 p, where the "I" refers to the First Report results.

However, there is a very important difference in the two

sets of data: there is an upper limit to & found by the finite

element approach, L = 1.125, corresponding to a limiting distance

of yielding ahead of the crack of x/p = 5. This angle means that

the greatest stress there can be in this basic crack problem is
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(1 + &) Y = 2.11Y; this is less than the (1 + v/2)Y of the slip

line theory for the straight line crack and much less than might

be expected from the First Report.

What this means in practice is that if the fracture stress

of the material, F, is greater than 2.11Y, no K. crack failure

will occur.

This kind of limitation, a characterization which seems very

important in practice, is even stronger than was anticipated by

former analyses, if not by experiment or practice. As an

example, for some pieces of ordnance equipment, the fracture

stress F of the material of which it was made was flat over the

temperature range of its possible employment; when the equipment

was used (i.e., loaded) at its normal-temperature of operation

there was no brittle K. failure, but when the equipment was

loaded at a reduced temperature, Y became sufficiently great for

brittle Kk failure to occur. The factor of concentration was

F/Y; i.e., (1 + &) See Figure 9.

Obviously, the fracture stress* of the material, F, should

be found by separite experiment if possible. Also, as far as is

known, the two physical quantities F and p are metallurgically

independent. If this is so, the metallurgist has two fabrication

0las an cr•ali meal a cae stMas for which rifffih's sudn acee desit seyem to bold ussig his fonnulaon. It is doubled dha K failrs

vahaa for stusawld wals have bee qwipaiy adudied for eompaoon or odftwilem te sOaw i which tey a macroscopicaiy brine, i.e., weU beow
die trmuasin Naoh eare, a st•e usually avoided in practice•,W haviog some uses.
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options for attaining a suitable Kw. There is evidence in the

First Report that p is dependent upon structure and sulfur (see

the First Report). If F, p (possibly machined in) and Y are

specified K can be found from L - f(L), i.e.,

Y x.- / K= f (1 Y -1).

In the case of the example above, the brittle fracture

stress could be inferred since a temperature low enough for

brittle fracture to occur in a simple tension test could be

attained using available coolants such as liquid nitrogen. This

is the case for some other materials such as mild steel and

tungsten (see Figure 6), which illustrates stress-strain curves

with their fracture envelopes. Many such curves were drawn to

represent the results of many tests on steel at this laboratory.

The "nil ductility" brittle fracture stress is considered to be

almost nil ductility since it is possible that a test under

hydrostatic tension on virgin material would yield a higher value

corresponding to a microstructure unaltered by plastic straining;

this, if true, is of no concern here because the present model

presumes yielding and fracture at the boundary of plasticity.

Other attempts to determine fracture stress have been

inconclusive because they are unfinished. They are:
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* Attempt to use certain notch geometries in tension

tests with partial yielding.

0 Attempt to put uniform exterior tension loading on a

plate containing a hole; the reason for using this

arrangement is that with it there is a maximum stress

which occurs at the boundary of the plastic region

(which extends outward from the bore) and which for

sufficient load may cause rupture. Since this

experiment was difficult to carry out, the same thing

was at least partially achieved during many trials by

pressing a ball about a quarter of an inch in diameter

onto the top side of approximately one inch square

plates supported circularly near their outer edges and

pierced with a 0.01" inch diameter hole. The behavior.

was observed on a television screen which picked up the

view of a microscope focussed on the bottom side.

* Attempt to use the Fyfe exploding wire technique at the

University of Washington through contracts. Here a

coated wire in the bore of a cylinder of an inch or

less in diameter is exploded by the controlled

electrical discharge of electricity stored in a

condenser bank. It was easy and very inexpensive to

"0c. e6 0.01 ick hal. W.p"mM W 3/16 6Ah eu.rem fad.a, s wai of 1275S.
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cause controlled subsurface (to the hole) rupture;

i.e., complete or incomplete rupture. Thus, an effect

of anisotropy could be seen. This was better, for

purposes of this report than plate-slap experiments

partly because rupture was not preceded by an enormous

deforming compression of the material being tested

before a tension wave caused rupture. There was a very

important quantitative question, however, about the

magnitude of the pressure generated, as well as a

question of whether important high strength materials

could be broken. Unfortunately, these questions could

not be answered before the work was terminated.

In the above cases a fracture stress is determined from a

multi-directional stress system resembling that of the loaded

crack. Thus the necessity of a failure concept for use of a

uniaxially determined fracture stress is largely avoided.

In the case of the unpressurized crack or notch deformed in

plane strain, there is a stress Y + YA acting perpendicularly to

the crack axis which we have associated with the brittle uniaxial

tension test, and a stress YA along the axis. Fracture openings

(preventing crack growth) have occurred across this lesser

stress, the material involved being much weaker in its direction

than in that of the major stress.
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In summary this study relies for fracture on the macroscopic

stress found to give almost nil ductility in the tension test.

It is important to note that creep or other rate effects may

occur at the tip of the crack and, since the region to the point,

x, of largest stress is so very small and has yielded, that the

fracture stress is environmentally sensitive; thus progressive

cracking is to be expected depending on contaminants and the

diffusion rate of hydrogen in the yielded region. The

theoretical fracture stress used by Griffith is estimated to be

reached microscopically at internal flaws but strengths and

failures at these individual flaws are not representative of the

macroscopic crack strength where failure covers many grains. The

situation is somewhat analogous to that where it may be desired

to determine the tensile fracture strength of a structural

component, a plate pierced by many holes or irregularities, a

case where one measures the strength by dividing the breaking

load of the plate by its nominal cross-sectional area,

independently of phenomena occurring at individual holes.

Here as the load is increased there is a gentle transition

of the largest stress S. from being proportional to the load to

being less responsive to it as the point of largest stress, x,

moves increasingly sub-surface and finally not responsive to the

load at all when the stress reaches 2.11Y and x = 5p. If S. does

reach 2.11Y < F, a marked transition occurs since from this point

on only ductile separation can occur; the crack opens up and the
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yield region changes. If S. does equal F after the yield point

is reached brittle fracture occurs. The failure of a Charpy Bar

is somewhat similar: above the transition temperature

corresponding to complete yielding below the notch the separation

surfaces open into a wide V of fixed angle which continues until

final separation occurs; below the transition temperature the

separation surfaces remain almost closed during fracture.

According to the model used in this study, plastic lobes at

the crack tip along with their shear stress trajectories give

rise to the maximum stress and they move as cracking proceeds.

Work is done on their creation and some of it is given back in

movement; this loss must be supplied by the loading. Our old

attempts to calculate these lobe generating energies and losses

were not completed to our satisfaction; questions involving

inelastic behavior remain. For a finite element treatment see

reference 5.

An addition of hydrostatic pressure reduces all stresses and

thus the proximity of breakage on the stress approach to Kk

failure although the formulae for Kk, which may be derived from

energy considerations, are independent of this effect; it is the

value for K. that differs with different materials; and in view

of the stress reducing effect of hydrostatic pressure, the value

found from standard tests using specimens with stress free crack
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faces are not applicable to pressurized crack faces. We show how

to modify the standard values to K,, values which are applicable.

Finally, let us examine Griffith's "The Theory of Rupture"

to see if his approach, which is commonly characterized as an

energy approach, is inconsistent with the author's approach.

Considering the lack of appropriate scientific knowledge to

do otherwise, Griffith confined himself to brittle solids obeying

Hooke's Law which might contain one or more cracks. The stresses

in the solids he computed from ordinary elasticity theory

including the stress to cause rupture. The latter stress was

taken to be comparable to the intrinsic internal pressure of the

solid (meaning atomic vibration pressure sufficient to cause

vaporization) corresponding to a strain energy density for

rupture comparable to the total heat of vaporization. Rupture

would represent an enormous temperature rise in the material if

the elastic strain energy did not go into surface energy as in

the extremely large surfaces associated with disintegration

(e.g., breakage of very thin new glass rods) or, locally, not

concentrated at the end of a crack and, therefore, go into new

surface if the crack were to lengthen. In fact, his well-known

formula represented a crack stressed so that if it were to

lengthen a bit (rupture) equilibrium would be maintained; i.e.,

its new surface energy would come from the strain energy of the

solid and potential energy of the loads so that the total energy
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would be unchanged. Surface energy density being a constant,

shorter cracks would be stable and longer ones unstable, for a

fixed loading, since the stress is greater for longer cracks.

Thus, we observe that Griffith relied on the ideal

theoretical rupture stress for both cracked and uncracked solids,

but, leaning heavily on experiments on glass, assumed that often

cracks were formed historically which weakened a solid and made

its tensile strength less but computable for simple geometries

from the ideal rupture stress or its corresponding surface energy

density and he derived his failure condition from an energy

balance.

Thus Griffith would seem to have neatly connected both

stress and energy approaches. But the crucial thing is would he

have used a different surface energy density value than he

contemplated if he had thought of our dodge* of making the

Griffith derivation trivial by employing internal15 rather than

with external loading (and so avoided the error in his first

paper)? We prefer to think he would have done so and so agreed

with our different Kk value for internal than external loading.

"Mak•ig dbe presure camcel te exterior loading so that all the oading is inside the crack makes the devatiom of the Oriflih foamula extremely
simple sane th cangy de to &he crack is sispl th work done by the pressure i creating vokame change inside tbe crack as a retu of the pressure (we

Appeadix ).
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NOTCH SUP UNES CRACK
ROOT

L9

Transverse View of Mid-Thickness Slice Showing
Fracture Origin At Elastic-Plastic Boundary and Slip Lines.
p = 0.005 In. 350x.

FIGURE 1
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True stress - true strain curves for
annealed tungsten. Test temp.=5230 K

FIGURE 6
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A FRACTURE MODEL: FRACTURE STRESS St

F
MiBIENT PRESSURE: p a 0 a) FRACTURE STRESS

M IAXIMUM STRESS
SET ONE BLOCK ON ANOTlhER. LOAD, F. ACROSS WEAKEST PLANE,

INCLUDING HYDROSTATIC
FRACTURE (LOAD AND) STRESS? Sf a 0. STRESS; SAME FOR

NOTCUES.

F AMBIENT PRESSURE: p > > Y

BLOCKS IN SHEAT11. LET F/A > Y. b) LATERAL FRACTURE
STRESS MAY BE LARGE.

p PLASTIC ELONGATION? YES.

STRESS F/A AT FRACTURE? p.

FRACTURE STRESS? Sf a 0.F

NOTE: The mating surfaces need not be flat
( R. BEEUWKES JR.)

19-066-1159/AMC-67

MEANING OF FRACTURE STRESS

FIGURE 7
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STRESS CONCENTRATION FACTOR t

2.53 2.39 2.17 2.17 2.79
90

80 SULFUR LEVEL

* 0.008 %
o 0.016%

70 M 0.025 */*
7 0.049 %1.

"60 0 O THEORY

(A 0

u50

40-

30L
,I I I I I' 900 800 700 600 400

TEMPERING TEMPERATURE (F). I I I I

200 220 240 260 280 300
TENSILE STRENGTH (Ksi)

INFLUENCE OF SULFUR ON PLANE-STRAIN FRACTURE TOUGHINESS OF 0.45C
tli-Cr-Mo STEELS (Experiments: A. J. Birkie, R. P. Wei, and G. E.
Pellissier, U. S. Steel Corp. Theory: R. Beeuwkes, Jr. -
Fracture Stress =-85.5 + Tensile Strength; Radii x lO, in.,
9.28, 7.83, 6.33, 4.48 for 0.008, 0.016, 0.025, 0.049 respectively.)

FIGURE 8
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Constant f Overlay

Applicable where f(=F-Y) and p do not vary
with Y(S-0).

1. Plot K vs Y data on single-cycle log-log
paper (Keuffel and Esser No. 458-100,
No. 46-7002 or equivalent - see text) with
K as ordinate.

2. Position this overlay so that its curve
best fits the data while keeping the axes
of the overlay parallel with the axes of
the paper.

3. f is the value of Y at the point where the
abscissa = 1 line of the overlay crosses
the Y axis.

4. f A• is one tenth of the value of K
where the ordinate = 10 line of the
overlay crosses the K axis.

10

FIRST REPORT

(1-0)

FINITE ELEMENT

(45 FIGURE 11



Constant F Overlay

Applicable where F and p do not vary with
Y (0=-l).

1. Plot K vs Y data on single-cycle log-
log paper (Keuffel and Esser No. 458-100,
No. 46-7002 or equivalent - see text) with
K as ordinate.

2. Position this overlay so that its curve
best fits the data while keeping the
axes of the overlay parallel with the
axes of the paper.

3. F is the value of Y at the point where
the abscissa = 1 line of the overlay
crosses the Y axis.

4. F - is the value of K where the ordinate
= 1 line of the overlay crosses the K axis.

o F-E Axes

0.1 1

FIGURE 12
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APPENDIX I

TRANSPARENT OVERLAYS

The transparent overlays are made to be used repeatedly

until worn out so long as it is desired to determine fracture

stress and effective crack tip radius by use of them from yield

strength and corresponding Kk measurements.

The overlays contain a curve, or curves, each identified by

a parameter which conveys their relationship to a law relating

fracture stress to yield strength. The curves are log-log plots

of a purely mechanical stress analysis relationship existing

between K,, yield strength, modulus of elasticity, Poisson's

ratio, fracture stress, and effective crack tip radius, though

expressed simply in terms of dimensionless groupings of these

variables called L and L and expressed as L versus i. This

relationship is insufficient in itself to determine fracture

stress and radius in the absence of a fracture stress law

relating fracture strength to yield strength and also a relation,

here assumed to be determined experimentally, between K,, and

yield strength.

In use the overlay is laid upon a log-log plot* of

experimental or slightly modified experimental K,, versus Y data,

in such a way as to best match the data in all or part of its

To ft same scale used in constncting the overlay. Furcs I I & 12 nmy be usJd as Iuasparcal overlays using a good back light.
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range. In this position, the values of K and Y under the unit

coordinate lines of the overlay yield the desired values of

fracture stress and radius, as described below. The match must

include at least three experimental points, for at least three

points are necessary to establish curvature which, of course,

describes the shape of a curve with a continuous slope.

The overlay curves themselves are constructed from a table

of L versus L for assumed constant values of the fracture law

parameter which is designated here by f and covers a practical

instructive range of -2:I3P1 for the fracture law used here.

The curves are graphs of log i/(A-P) versus log 1/[(A--)L] and

are easily transferred to transparencies by a number of copy

machines.* The curves are interpreted in terms of fracture

stress and radius.

Here, as always, the fracture stress is

F= Y+ Y&

so that

F-Y

Y

"For exu=i, a 3-M 7Urmax Copier.
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The fracture stress law is assumed to be linear in the Kk, Y

region being matched; i.e.,

F= (1+P) Y+f

so that

F-Y-f=.f
Y Y Y

and, hence, &-1P=flY

The abscissa on the transparency is

log 1/ (L-0) =log Y/f =log Y-logf

so that Y = f where Y/f = 1 and log Y/f = log 1/(& - = 0.

The ordinate is

log 1/[ (A--P) L] = log [ (Y1 f) (K/Yý-ni)J

= logK-logfVf-p

and

K = fvf-p where 1/ (&--P) L] =1
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Thus, if one of the 0 curves of the transparent overlay can

be matched to a log-log plot of experimental values of K. versus

Y, the value of the Y intersected by the unit coordinate line of

the overlay will be Y = f, for what is log Y on the plot is [log

Y - log f]; i.e., 0 on the overlay when it is in the matching

position. Correspondingly and similarly, the horizontal unit

coordinate line of the overlay is where K = fvii_ and from this

./- is derived by dividing out the value of f. Therefore, Vip

as well as the constants fl and f of our fracture law are known.

The overlays and graphs for the examples in the First Report

were for • = 0; i.e., F = Y + f, and • = -l (i.e., F = f,

independent of Y). The curves for making these overlays and the

experimental data were plotted on the largest size single cycle

log-log paper locally available that would fit into this report

with K on the vertical and Y on the horizontal scale. This size

paper and the corresponding overlays are considered so generally

useful that such overlays are included in this report and are

called the f (for fl = 0) and F (for 0 = -1) overlays.

However, to make an overlay to cover the larger range of

experimental variables and ranges of 0 that may be encountered, 2

x 3 log-log paper, whose size also conforms to that of the report

had to be used. Unlike the scale of the single cyle paper above,

this selection of paper means that for this wider range the scale

is such that the Y values (plotted on the horizontal axis, as

before) increase from right to left.
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APPENDIX II

ENERGY RELATIONS IN SUPERPOSITION OF HYDROSTATIC PRESSURE

In view of the fact that, in contrast to three-dimensional

problems, in plane strain a lateral stress is required to keep the

thickness constant, and in plane stress there is no lateral stress,

it may be wondered just how the superposition of hydrostatic

pressure is to be carried out (whether lateral pressure is to be

employed). Here the superposition is taken in such a way as to

preserve the plane strain and stress conditions. Thus, to modify

the general expression for energy per unit volume in terms of the

stresses for the inclusion of hydrostatic pressure, p:

for three-dimensions add - p to each stress

* for plane stress make the stress in the thickness

direction zero and add nothing to it

for plane strain make the stress in the thickness

direction a (ox + ay) in which a without a subscript is

Poissons's ratio, and add p to a, and to ay, including the

ax and ay in a(ax + ad).

Each modified expression for energy is the integrand of an

integral over the volume of a body for the total energy of that

body; the part, in each case, without p is the whole energy before
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superposition of p and the part containing terms in p is the

decrease in energy caused by superposition of pressure p. The

latter consists of a simple term in p2 and a part in which the sum

of the original stresses is multiplied by p. By replacing each

such stress by its isotropic Hooke's Law expression of the type a

= XA + 2ge, it is seen that the sum represents the unit dilatation

so that the integral of this part is a constant multiplied by

pjAdV, i.e., pressure multiplied by the whole dilatation caused by

the original stresses.

This dilatation was produced by an original exterior boundary

loading stress + p since this is the p that is being eliminated on

the exterior boundary by the hydrostatic addition of -p. The total

dilatation jAdV above is expressed in terms of the original loading

stress +p by means of a theorem in Love's "The Mathematical Theory

of Elasticity", Article 123.

It is found that (since the crack has no volume in the

unstrained condition) the total energy contribution caused by the

hydrostatic -p addition is:

* for three dimensions -p 2V/2K

Where the bulk modulus K = E/[3(l - 2a)]

for plane stress -p2 V/2K,

where the bulk area modulus K, = E/[2(1 - a)]

* for plane strain -p 2V/2K2

Where the bulk area modulus K2 = E/[2(1 - a) (1 - 2a)]
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as though there was no crack at all.

Where hydrostatic pressure cancels the external load leaving

the crack under internal pressure, these simple terms are the

amounts the total original energy has decreased; what energy

remains, since the only load is now in the crack, is due to that

pressure in the crack. This energy, because displacement in the

crack is proportional to the internal pressure, is the pressure

multiplied by half the volume it produces.

Now, consider from this background of superimposed hydrostatic

stress, Griffith's analytical difficulty. He states, "A solution

of this problem was given in a paper read in 1920 but in the

solution there given the calculation of the strain en( :-gy was

erroneous in that the expression used for the stresses gave values

at infinity differing from the postulated uniform stress at

infinity by an amount which, though infinitesimal, yet made a

finite contribution to the energy when intregated around the

infinite boundary. This difficulty has been overcome by slightly

modifying the expressions for the stresses, so as to make this

contribution to the energy vanish, and the corrected condition for

the rupture of a thin cracked plate under a uniform pull applied in

its plane at its outer edge is R=V2ET/7Tc where...". 4

Now suppose we have a plate containing a crack (or a hole for

that matter) under internal pressure p only, superposition of a

hydrostatic tension p on that plate will eliminate the internal
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pressure p and load the plate on its outer edge with a tension

stress acting normally to its outer edge; there are no secondary

stresses even though no limit has been put on the size or shape of

the plate. Any energy input caused by the presence of a crack is

due to the action of the original internal pressure on the sides of

the crack.' Within reason, it would seem that little error in this

energy input would be made if the maximum opening of the crack is

considered known, if the crack is assumed to have gone into an

elliptical shape even where this is not the case; e.g., if the

cracked plate is short or narrow in comparison to the size of the

crack.
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